首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3759篇
  免费   97篇
  国内免费   276篇
  2023年   12篇
  2022年   25篇
  2021年   34篇
  2020年   20篇
  2019年   35篇
  2018年   45篇
  2017年   29篇
  2016年   33篇
  2015年   69篇
  2014年   422篇
  2013年   411篇
  2012年   254篇
  2011年   330篇
  2010年   275篇
  2009年   356篇
  2008年   220篇
  2007年   153篇
  2006年   128篇
  2005年   122篇
  2004年   135篇
  2003年   130篇
  2002年   92篇
  2001年   62篇
  2000年   42篇
  1999年   50篇
  1998年   69篇
  1997年   64篇
  1996年   50篇
  1995年   69篇
  1994年   53篇
  1993年   34篇
  1992年   27篇
  1991年   29篇
  1990年   29篇
  1989年   30篇
  1988年   23篇
  1987年   19篇
  1986年   12篇
  1985年   13篇
  1984年   31篇
  1983年   22篇
  1982年   24篇
  1981年   14篇
  1980年   6篇
  1979年   12篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
排序方式: 共有4132条查询结果,搜索用时 484 毫秒
1.
Acute lung injury (ALI) is a serious disease with unacceptably high mortality and morbidity rates. Up to now, no effective therapeutic strategy for ALI has been established. Rutin, quercetin-3-rhamnosyl glucoside, expresses a wide range of biological activities and pharmacological effects, such as anti-inflammatory, antihypertensive, anticarcinogenic, vasoprotective, and cardioprotective activities. Pretreatment with rutin inhibited not only histopathological changes in lung tissues but also infiltration of polymorphonuclear granulocytes into bronchoalveolar lavage fluid in lipopolysaccharide (LPS)-induced ALI. In addition, LPS-induced inflammatory responses, including increased secretion of proinflammatory cytokines and lipid peroxidation, were inhibited by rutin in a concentration-dependent manner. Furthermore, rutin suppressed phosphorylation of NF-κB and MAPK and degradation of IκB, an NF-κB inhibitor. Decreased activities of antioxidative enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase-1 caused by LPS were reversed by rutin. At the same time, we found that ALI amelioration by chelation of extracellular metal ions with rutin is more efficacious than with deferoxamine. These results indicate that the protective mechanism of rutin is through inhibition of MAPK–NF-κB activation and upregulation of antioxidative enzymes.  相似文献   
2.
Resistance to therapy-mediated apoptosis in inflammatory breast cancer, an aggressive and distinct subtype of breast cancer, was recently attributed to increased superoxide dismutase (SOD) expression, glutathione (GSH) content, and decreased accumulation of reactive species. In this study, we demonstrate the unique ability of two Mn(III) N-substituted pyridylporphyrin (MnP)-based SOD mimics (MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+) to catalyze oxidation of ascorbate, leading to the production of excessive levels of peroxide, and in turn cell death. The accumulation of peroxide, as a consequence of MnP+ascorbate treatment, was fully reversed by the administration of exogenous catalase, showing that hydrogen peroxide is essential for cell death. Cell death as a consequence of the action of MnP+ascorbate corresponded to decreases in GSH levels, prosurvival signaling (p-NF-κB, p-ERK1/2), and in expression of X-linked inhibitor of apoptosis protein, the most potent caspase inhibitor. Although markers of classical apoptosis were observed, including PARP cleavage and annexin V staining, administration of a pan-caspase inhibitor, Q-VD-OPh, did not reverse the observed cytotoxicity. MnP+ascorbate-treated cells showed nuclear translocation of apoptosis-inducing factor, suggesting the possibility of a mechanism of caspase-independent cell death. Pharmacological ascorbate has already shown promise in recently completed phase I clinical trials, in which its oxidation and subsequent peroxide formation was catalyzed by endogenous metalloproteins. The catalysis of ascorbate oxidation by an optimized metal-based catalyst (such as MnP) carries a large therapeutic potential as an anticancer agent by itself or in combination with other modalities such as radio- and chemotherapy.  相似文献   
3.
4.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   
5.
Abstract A screening procedure for highly thermostable yeast superoxide dismutase was developed. Growth yields at various temperatures were estimated for ten mesophilic and thermotolerant strains, belonging to the genera Saccharomyces, Kluyveromyces and Pichia . Higher yields at 45°C were obtained for K. lactis 90-3 and 90-4. A correlation between the ability to grow at higher temperature and the thermostability of the superoxide dismutase enzyme synthesized was observed. A comparison of the operational stability of the superoxide dismutase of all tested strains suggests that the enzyme of K. lactis strains was more thermostable than that of the other tested microorganisms.  相似文献   
6.
The copper complex of indomethacin (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole acetate), a common anti-inflammatory drug, was prepared and characterized. Crystal structure determination revealed the dimeric form of the 1:2 complex, namely Cu2(indomethacin)4 · L2, in the unit cell. Suprisingly, the copper-copper distance (263 pm) was very close to metallic copper (256 pm). The two coordination sites in the copper-copper axis can be readily replaced by superoxide. An intriguing similarity to Cu2(acetate)4 was seen.Due to the lipophilic nature of the indomethacin ligand, this copper complex reacted with superoxide in aprotic solvents. The superoxide dismutating activity was successfully demonstrated in Me2SO/water and acetonitrile/water mixtures using the nitro-blue tetrazolium assay and pulse radiolysis. The second-order rate constant of 6 · 109 M?1 · s?1 in strictly aqueous systems dropped only slightly to 1.1 · 109 M?1 · s?1 when aprotic solvents were used. This is the fastest rate constant ever observed for a copper-dependent dismutation of superoxide. The KO2-induced lipid peroxidation in both erythrocytes and liver microsomes was suppressed by 70% in the presence of 1 · 10?10 mol · ml?1 of Cu2(indomethacin)4. The inhibitory action dropped to 25% when Cu2Zn2superoxide dismutase was employed. The formation of copper · indomethacin in rat serum after administration of indomethacin was shown in vitro and in vivo.  相似文献   
7.
The gene encoding the crystalline surface layer (S-layer) protein from Campylobacter rectus , designated slp , was sequenced and the recombinant gene product was expressed in Escherichia coli . The gene consisted of 4086 nucleotides encoding a protein with 1361 amino acids. The N-terminal amino acid sequence revealed that Slp did not contain a signal sequence, but that the initial methionine residue was processed. The deduced amino acid sequence displayed some common characteristic features of S-layer proteins previously reported. A homology search showed a high similarity to the Campylobacter fetus S-layer proteins, especially in their N-terminus. The C-terminal third of Slp exhibited homology with the RTX toxins from Gram-negative bacteria via the region including the glycine-rich repeats. The Slp protein had the same N-terminal sequence as a 104-kDa cytotoxin isolated from the culture supernatants of C. rectus . However, neither native nor recombinant Slp showed cytotoxicity against HL-60 cells or human peripheral white blood cells. These data support the idea that the N-terminus acts as an anchor to the cell surface components and that the C-terminus is involved in the assembly and/or transport of the protein.  相似文献   
8.
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca2+ dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca2+. We show that at physiological pH, Ca2+ induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca2+ boosts the onset of SOD1 aggregation. In agreement, Ca2+ decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca2+ induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca2+-induced aggregates, thus indicating that Ca2+ diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca2+ levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca2+ may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.  相似文献   
9.
Reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide (H2O2), have a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of their production. For measuring ROS production in cells, the ESR spin trapping technique using cyclic nitrones distinguishes itself from other methods by its specificity for superoxide and hydroxyl radical. However, several drawbacks, such as the low spin trapping rate and the spontaneous and cell-enhanced decomposition of the spin adducts to ESR-silent products, limit the application of this method to biological systems. Recently, new cyclic nitrones bearing a triphenylphosphonium (Mito-DIPPMPO) or a permethylated β-cyclodextrin moiety (CD-DIPPMPO) have been synthesized and their spin adducts demonstrated increased stability in buffer. In this study, a comparison of the spin trapping efficiency of these new compounds with commonly used cyclic nitrone spin traps, i.e., 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and analogs BMPO, DEPMPO, and DIPPMPO, was performed on RAW 264.7 macrophages stimulated with phorbol 12-myristate 13-acetate. Our results show that Mito-DIPPMPO and CD-DIPPMPO enable a higher detection of superoxide adduct, with a low (if any) amount of hydroxyl adduct. CD-DIPPMPO, especially, appears to be a superior spin trap for extracellular superoxide detection in living macrophages, allowing measurement of superoxide production in unstimulated cells for the first time. The main rationale put forward for this extreme sensitivity is that the extracellular localization of the spin trap prevents the reduction of the spin adducts by ascorbic acid and glutathione within cells.  相似文献   
10.
Abstract sodC , encoding [Cu,Zn]-cofactored Superoxide dismutase, once thought to be virtually confined to eukaryotes, has now been described in many Gram-negative pathogens that have their primary niche of colonization in the upper respiratory tract. Their role in host-parasite interactive biology is unknown. We here show that members of the major human and animal enteric pathogenic species Salmonella harbour a version of sodC most closely resembling that found in Brucella abortus . The enzyme it encodes is a novel candidate determinant of virulence in Salmonella , an intracellular pathogen potentially exposed to toxic oxygen free radicals within its intracellular niche.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号